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1. Introduction and Preliminaries

In order to unify results from the differential calculus with results
from the difference calculus, in 1990 Hilger [13] created the time scale
calculus by generalizing the definition of derivative and integral to time
scales. Now the study of dynamic equations on time scales has become an
area of mathematics receiving a lot of attention, see monographs [2, 3,
16]. As is known, integro-differential equations find many applications in
various mathematical problems, see Corduneanu [5], Guo et al. [10] and
references therein for details. For the recent developments involving
existence of solutions to BVPs for integro-differential equations,
impulsive integro-differential equations and integral-differential
equations on time scales we can refer to [1, 7, 9, 11-14, 17-18, 21-24, 27-
29]. So far the main method appeared in the references to guarantee the
existence of solutions is the method of upper and low solutions. Motivated
by the ideas in the recent works [25-26], we come up with a new approach
to ensure the existence of at least one solution for certain family of first-
order nonlinear integro-differential equations with periodic boundary
value conditions or antiperiodic boundary value conditions. Our methods
involve new differential inequalities and the classical fixed-point theory.
The traditional method, method of upper and low solutions, although has
been proven effective to tackle scalar-valued integro-differential
equations, it is rather cumbersome to apply to large systems of equations.
This paper at least presents an option to deal with the BVPs for certain
family of large systems.

Let T be a time scale (any nonempty closed subset of the real
numbers R with order and topological structure defined in a canonical
way). Then we introduce some definitions and lemmas which can be
found in [2, 3, 13, 16].

Definition 1.1. The mappings o,p: T - T defined as o(t)

= inf{s € T; s > ¢t} and p(t) = sup{s € T;s < ¢} are called jump operators.
The mapping u(¢) : T — R* defined by p(t) = o(t) — ¢ is called graininess.

Definition 1.2. A mapping f : T — X 1is said to be differentiable at

t € T, if there exists an o € X such that for any ¢ > 0 there exists a
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neighborhood N of ¢ satisfying |f(o(t)) — f(s) — (o(t) — s)a| < € o(t) — s| for
all s € N.

Lemma 1.1 [2, p. 8]. Assume f,g: T — R are differentiable at

t € T®. Then the product fg : T — R is differentiable at t with

(f + 8)*(t) = F*()gt) + f(o(t)g™ () = FB)g™ () + £~ ()g(alt)),
where

T — T\ (p(sup T),supT] if sup T <oo;
T if sup T = o0,

Definition 1.3. A mapping f : T — X, where X is a Banach space,

is called rd-continuous if

(1) it is continuous at each right-dense ¢ € T;

(i1) at each left-dense point the left-side limit f(¢~) exists.

Definition 1.4. We say that a function p: T — R is regressive

provided
1+ u(®)p(t) = 0 for ¢t e T.

The set of all regressive and rd-continuous functions will be denoted

in this paper by R(T,R). For two functions p, ¢ € R(T, R) define a plus
@ and a minus © by

(p ®q)(t) = plt) + q(t) + u(t)pt) q(t),

(ep)(t) = - — 2O

1+ p(0)p@)

t
For p e R(T,R), Hilger [13] proved e,(t, ty) = exp(j Eu(r)(P(1)AT)
tO
1s the unique solution of
2% = plox, x(to) = 1,

where &;,(z) = %Log(l + zh).
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Remark 1.1. If p(¢) > 0 for ¢ > ¢, clearly 1+ u(¢)p(¢) > 1. Therefore
Eu(r)(P(7)) 2 0 and so e, (t,2y) > 1.

Lemma 1.2 [2, p. 62]. If p,q € R(T,R), then
() eolt,s) =1 and e,(t, t) = 1;

(i1) ep(c(t)’ S) = (1 + M(t)P(t))ep(t, S);
1
(i) e,(t, s) = m = ecp(s, 1);

(iv) ep(t, r)ey(r, s) = eplt, s);
(V) e,(t, s)eg(t, s) = epaq(t, 5).

Lemma 1.3 [28]. Assume that {f,}, n is a function sequence on J

satisfying () {f,}, .y is bounded on oJ; (i) {f;' },cy is bounded on J. Then

there is a subsequence of {f,, }n oy converges uniformly on J.

Without loosing generality, we assume that 0,a € T. This paper

mainly considers the existence of solutions for the following first-order
nonlinear integro-differential system on time scales with periodic

boundary value conditions:

{xA(t) = f (¢, x(Kx)(t)), t€[0, a], (1.1)
x(0)=x (o (a));

and “non-periodic” conditions:

{x%) = 16, % (K %) (1)), t<[o, a}; (1.2)
Ax (0)+ Bx (c(a))=06;

where (Kx)(¢) denotes
( Iotkl(t, $)xy (5)As, J;k2(t, Sha(s)As, - j ;kn(t, 5, (5)As)

with &; (¢, s) : [0,1] x [0,1] = [0, + ) continuous for i =1,2,---,n; A and B
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are n x n matrices with real valued elements, 0 is the zero vector in R™.

n n
1
For A = (@), we denote [ 4] by (3> Jay)>.
i=1 j=1

In what follows, we assume function f :[0,c(a)]x R" xR" — R" is

continuous, and det(A + B) # 0.

Noticing that det(A + B) # 0, conditions Ax(0) + Bx(c(a)) = 6 do not
include the periodic conditions x(0) = x(c(a)). Furthermore, if A = B =1,
where I denotes nxn identity matrix, then Ax(0)+ Bx(c(a)) =0
reduces to the so called ”anti-periodic” conditions x(0) = —x(c(a)). The

authors of [4, 6, 8, 20, 22] consider this kind of "anti-periodic” conditions
for differential equations or impulsive differential equations. To the best
of our knowledge it is the first paper to deal with integro-differential

equations with “anti-periodic” conditions so far.

This paper is organized as follows. Section 1 gives some preliminaries.
Section 2 presents some existence theorems for PVPs (1.1) and a couple of
examples to illustrate how our newly developed results work. In Section 3
we focus on the existence of solutions for (1.2) and also an example is
given.

In what follows, if x,y € R", then (x,y) denotes the usual inner

product and |x| denotes the Euclidean norm of x onR". Let

C([0, o(a)], R™) = {x : [0, o(a)] > R”, x(t) is continuous }
with the norm

x|~ = sup |lx(@)
el = _sup 0

The following well-known fixed-point theorem will be used in the
proof of Theorem 3.3.

Lemma 1.4 [19]. Let X be a normed space with H: X - X a
compact mapping. If the set
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S :={ue X :u=LHu forsome A € [0,1)}

is bounded, then H has at least one fixed-point.

2. Existence Results for Periodic Conditions

To begin with, we consider the following periodic boundary value

problem

{xA(t) +m(t)x(t) = g(t, x(0),(Kx)0), ¢ < [0, al; @1
x(0) = x(a(a));

where g:[0,a]xR"xR"” - R" and m:[0,a] > R are both

continuous functions, with m having no zeros in [0, a].

Lemma 2.1. The BVP (2.1) is equivalent to the integral equation

e cla o(a
x(¢) = e_p,(t, 0) (1__m(—()’)(,))0) J.O )e_m(O, o(t))n(r)At

e_,,(cla
; Jte_m(O, G(t))n(r)Ar), ted ©.2)
0

where n(t) = g(t, x(t), (Kx)(¢)), t € [0, a].

Proof. First note that for any solution of integral equations (2.2), we
have by Lemma 1.1 that

o(a)

#20) = =ity . 0)[ =252 [ 0. o(mio

—e_p(o(a), 0)Jo
; j ;e_m(O, c(r))n(r)mJ

+e_p(o(t), 0)e_p, (0, o(t)n(t) = —m(t)x(t) + ().
Moreover, there holds from Lemma 1.2 that

#(6(0) = enlota 0) 1 D2 [ 0, alom(ons

—e_p(o(a), 0)Jo



ON THE SOLVABILITY OF BOUNDARY VALUE ... 23
o(a)
+ J. e_,,(0,5(t)n(t)At
0

e_n(ola o(a)
= _—e"ifn ((G()(;)E’)O) 7 e 0, slhme)ac - x(0)

Now consider equation
x2(0) + m()x (¢) = g, (), (Kx) (¢). (2.3)

Then, by the method of constants variation, we know all solutions of (2.3)

can be written as

2(t) = e (t, O)US e, (0, o(t))n(c) At + c],

where n(t) = (¢, x(¢), (Kx)(t)), t € [0, a], C € R" is a constant vector. See

that boundary condition x(0) = x(c(a)) implies

e_m(o(a), 0) [o@

€= T e (o), 0) Jo

e_p (0, 5(1)n(v)At.

Thus, the proof is completed.

Lemma 2.2. The family of (2.2) is equivalent to the family of

o(a)
w(0)= [ 7 Gl 9)as, x(6). (Kx) s,

where
- 1 e_n(t, o(s)), 0 <o(s) <t <ola);
Gt s) = 7= e_p(o(a), 0) {e_m(c(a), 0))e_n (, o(s)), 0 <t < o(s) < ofa).
Furthermore,
|G(¢, s)| < Gy = max{l, e_p(o(a), 0)}

1= e p(ola), O
v0<s<a,V0<t<oa).

Proof. Since the first part is clear, we only prove the second part.
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Case 1. m(t) > 0, t € [0, o(a)]. We have

e_n(o(a), 0) <1, e_,(c(a), 0)<e_,(t ofs) <1, if 0 <o(s) <t < o(a);

) enlo@0) e < o
e_,(c(a), 0) < e_,,(c(a), 0)e_,,(t, o(s)) = PO 1if 0<t<o(s)<
o(a).

Thus,

e_,,(c(a), 0) 1
0 <1 @ 0 9T o

Case 2. m(t) < 0,t € [0, o(a)]. We have
e_p(o(a), 0) > 1, e_,,(c(a), 0) > e_,, (¢, o(s)) = 1, if

0 <o(s) <t <o(a);

e, (o{a), 0) > e, (o(a), 0)e_,(t, ofs)) = % 51 if

0 <t <o(s) < o(a).

So,

Gt <0 and 0t 9 = £ 22 TGy

Then the conclusion follows from the combination of case 1 and case 2.

Theorem 2.1. Let g : [0, a]x R?" xR" - R" and m :[0,1] > R be
both continuous functions, with m having no zeros in [0, a]. Assume that

there exist constants R > 0, o > 0 such that

ola) GoM(R) _,

7 (2.4)

and

Mg x, (Kx) (@) < 2oc[(x, rg(t, x, (Kx)(2))) - m(t)||x||2]+ M(R), (2.5)
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VA € [0, 1]; V(¢, x) € [0, a] x Bg,
where M(R) is a positive constant depending on R, Bp = {x € R",

|x|| < R}. Then PBVP (2.1) has at least one solution x € C with
[xc < R.

Proof. Let C = C([0,0(a)R") and Q= {x(t) e C, |x(t)|c < R}.
Define an operator 7' : Q — C by

Tx(t) = j:(a) G(t, s)g(s, x(s), (Kx)(s))As, Vt € [0, o(a)]. (2.6)

Since g, K is continuous and G (¢, s) is bounded by G, we have that

T is continuous and TU 1is bounded for any bounded set U < C.

Furthermore, for any {y,},.y € TU, there exists a corresponding set

{Xn},eny € U such that y, = Tx,, that is, y>(t) = -m(t)x,(t)
g(t, x,(t),(Kx,)(t)). Taking into account that {x,} _y is uniformly

bounded, we have {y5(t)},.x is also uniformly bounded. Then it follows
from Lemma 1.3 and Remark 1.2 that operator 7' is compact.

Consider that, for the ball Q,
x # MTx, Vx € C with x € 0Q, VA € [0, 1], 2.7
implies
0¢(I-AT)(x), Vx € 0Q, VA € [0, 1].
Define H; = I - AT, : € [0, 1], where I is the identity. So if (2.5) is true,

then from the homotopy principle of Leray-Schauder degree [19, Chap. 4.],
we have

degrs(H;, Q,0) = deg;g(I - AT, Q, 0)
= degps(Hy, Q, 0) = degy5(Hy, @, 0)
=degzg(l, Q,0)=1=0.

Therefore, it follows from the non-zero property of Leray-Schauder degree
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that Hy(x) = x — Tx = 0 has at least one x € Q.

Now our problem is reduced to prove that (2.7) is true. Observe that
the family of problems

x =ATx,\ e|0,1] (2.8)
is equivalent to the family of PBVPs

{xA(t)+ m(t)x(t)=2g(t, x(t), (Kx)(t)), te[0, al; (2.9)
x(0) = x(c(a)).

Consider the function r(t) = ||x(t)||2t € [0, o(a)], where x(t) is a solution

of (2.9). Then r®(¢) exists for ¢ e [0, a] and we have by the product rule
rA(t) = (x2), x(t)) + (x(o(t), x2(t)))
= (x(@), x*(©) + (x(0) + n()x" @), x°@))

= 2(x(t), x%(t)) + u(t) (x2(t), x2())
> 2(x(t), x(t)), t [0, a].

Let x be a solution of (2.8) with x € Q. We now show thatx ¢ 6Q. From
(2.5) we have, for eacht € [0, o(a)] and each A € [0, 1],

c(a)
<O = =@ = 1] 2GC s)als, x(6) (Kx)e)as]
o(a)
< GO.[O Mg (s, x(s), (Kx)(s))|As
o(a)
< Gy j L 2o dals x(6). (K2)(s) - m(e)e(s)) + M(R)as

c(a)
- G, j ) ( [2a(x(s), x2(s)) + M(R)]As
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< G, J' :(“) [ar®(s) + M(R)]As

= Go[a(|x(s(@)]? - [x(0)[*) + o(a)M(R)]
- (a)Gy M(R).

Then it follows from (2.5) that x ¢ 0Q. Thus, (2.7) is true and the proof is

completed.

Corollary 2.1. Let g and m be as in Theorem 2.1 with
m(t) < 0, t € [0, a]. If there exist constants R > 0,0 > 0 such that

c(a)GI%M(R) »

and
lgtt, x, (Kx)@))] < 2a[(x, g, x, (Kx)¢))) - m@)|=[*]+ M(R),
V(¢, x) € [0, a] x Bp,
where M(R) is a positive constant depending on R, Bp = {x € R",

|x| < R}, then PBVP (2.1) has at least one solution x € C with
|*] < R.

Proof. Multiply both sides of (2.8) by A € [0, 1] to obtain

Mglt, x, (Kx)O)] < 2al(x, rglt, x, (Kx)(¢) - Am@)]x]] + AM(R)

< 20f{x, 70, %, (Kx)(0))) ~ m@e]] + M(R),
v(¢, x) € [0, a] x Bp.

It completes the proof.

Now consider the existence of solutions of PBVP (1.1). It is easy to see
(1.1) is equivalent to the PBVP

x® —mox = (¢, x, (Kx)(t)) — mox, t € [0, al; (2.10)

x(0) = x(o(a)),
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where m( > 0 isa constant, f : [0, a] x R” x R" — R" is continuous.
Corollary 2.2. If there exist constants R > 0, o > 0 such that

o(a)ey,, (o(a), 0)M(R)
emo (G(a)’ 0) -1

(2.12)

and
&, x, (Kx)(t)) - mox | < 2a[{x, f x, (Kx)(t))) + m0||x||2] + M(R),
v(¢, x) € [0, a] x Bg,

where M(R) is a positive constant dependent on R, Bp ={xeR",
|x| < R}, then PBVP (1.1) has at least one solution x € C with ||x|, < R.

Remark 2.1.If T = R and a =1, then (2.12) reduces to

mg
e—M < R.
e™ —1
Example 2.1. Consider the following PBVP with n =2, T = R and

a=1.

t
x'=2x +x° + %J. (¢ — s)x(s)ds;
0

cos(2nt)

20 (2.13)

1
Yy =3y+% IO e By(s)ds +
x(0) = x(1), ¥(0) = ¥().

We prove that (2.13) has at least one solution (x(t), y(t))' with

Vx@)? + y@)? < 0.4, vt <0, 1].

First note that (2.13) has no constant solution. Let u = (x, y)',

| = Va2 + y? and

f(t, u, (Ku)(t), (Lu)@)) = (2x + x> + %J‘S(t - 8)x(s)ds, 3y
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x [ i cos(2mt) \T
+§J.Oe y(s)ds + o0 ).

t t
Since V(¢, u) € [0, 1] x Bp, |%J. (t — s)x(s)ds| < RTQ and |§I e’
0 0
y(s)ds| < %2, we obtain

|F @&, u, (Ku)(t)) - 2u| = (x + —J (t = s)x(s)ds, ¥

+ %I;etsy(s)ds +—— COS(ZM) )

\/(x e j (t—s)x(s)dsf
cos(Znt)Jz

x (! —ts
+(y+§J.Oe y(s)ds + 20

34 % I;(t - s)x(s)ds|

cos(2nt) |

t
+y+ £J. e By(s)ds +
8Jo

R R® 1
S|x|3 +T+|yl+?+%,

= o + |y|+%+ L v, w) e [0, 1] x By

On the other hand,

2al(u, F(t, u(Ku)(t), (Lu) () + 2Jul?]
= 20[2x2 + x* + %J;(t — s)x(s)ds + 3y% + x—gj;e_tsy(s)ds

LY cos(2nt)

50 +2x2 + 2y2]
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3 3
> 20(4x2 + x* + 5y? —%—%—%)
3
= 4x? + x* + 5y? —%—%, for a = %, v(t, x) € [0, 1] x Bp.
Clearly,
min{x* + 4x2 - |x|3} =0
xeR
. 2 _ _L
min{5y” =i} = -55-
Thus,

|F (. u, (Ku) @) - 2u] < 20((u, F u, (Ku) @) + 2ul*) + M(R),
where

1 3R® 3R? R 1
-2 M(R)=2°2L_  ob K
=g, MR)==g—+=—+ o5+

Now it is sufficient to find a positive constant R satisfying

62

e2—1

M(R)-R < 0.

2

It is not difficult to get 2‘3 M(R)- R <0 for R e[0.4, 0.8] by
e” -1

Mathematica 4.0. Then our conclusion follows from Corollary 2.2.
3. Existence Results for “Non-Periodic” Conditions

In this section we study the problem of existence of solutions for BVP
(1.2).

Lemma 3.1. The BVP (1.2) is equivalent to the integral equation
t o(a)
w(0) = [ fls. 2(6), (Ke)s)as - (4 + BY B[ " fls. x(s). (Kx)(s))as,
t € [0, o(a)].

Proof. The result can be obtained by direct computation.
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Theorem 3.1. Assume det B # 0 and ||B_1A|| < 1. Suppose there

exist constants R > 0, a = 0 such that
o(a)(1+](A+ By ' B|)M(R) < R, (3.1)
and
If(t, x, (Kx) @) < 20, f(t, x, (Kx)(t)) + M(R), (3.2)
V(t, x) € [0, a] x Bg,

where M(R) is a positive constant depending on R,Bp = {x € R",
|x| < R}. Then BVP (1.2) has at least one solution x € C with |x||, < R.

Proof. Let C = C([0, o(a)], R") and Q = {x(t) € C, 2@ < R}.
Define an operator T : Q — C by

73(0) = [ fls, 165), (Ko) (5)s

o(a)
_(A+B)'B j  fle. x(s). (Kx)(s))ds. ¢ < [0, o(a)). (33)

Since f is continuous, we see that 7 is also a continuous map.
Deducing in a similar way as in the proof of Theorem 2.1, we can still
prove that operator 7 is compact. Then, according to the homotopy
principle and non-zero property of Leray-Schauder degree, it is sufficient

to prove

x # ATx for all x € C with |x|, = R and for all < [0, 1]. (3.4)

See that the family of problems
x = Ax, A €0, 1] (3.5

is equivalent to the family of BVPs

{x' = M(¢, x, (Kx)(t)), t € [0, al;

Ax(0) + Bx(c(a)) = 6. (3.6)
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Consider function r(t) = ||x(t)||2, t € [0,1], where x(t) is a solution of

(3.6). Then r2(¢) exists for ¢ e [0, a] and we have by the product rule
(1) = (x2(2), x(@) + (2(o(t), x*(2)))
= (), x2(©) + (x(@) + n@Ox" (), *(2)
= 2(x(t), x2(0)) + 2" @), x*(2)
> 2(x(t), x*(t)), t € [0, al.
Note that B~ A|| <1 implies
lx(o(@))] = |B~ Ax(0)] < [BT'A] - |x(0)] < [x(0)].

Let x be a solution of (3.5) with. x € Q. We now show thatx ¢ 6Q. From
(3.2) and (3.3) we obtain, for each ¢ € [0, o(a)] and each A < [0, 1],

[x@)] = [ Tx@)]

o(a)
- I :)kf(s, x(s) (Kx)(s))As — (A + B 'B I | M. x(s) (Kx)s))as|
o(a)
<(1+|(A+B)yB|) j G (o). (o) ()]as
o)
<(1+](A+B) B||)j L 7Gs x(6). (Bx) @) s

o(a

<(1+[(A+ B)‘1B||)J.O )[20.(x, f(s, x(s), (Kx)(s))) + M(R)]As
o(a)

<@+la+ B B[ o) + ME)hs

< (1+](A + B)" BlJo(@) [a(|lx(c(a)” - |x(0)) + M(R)]

< o(a)(1+|(A + B ' B|)M(R).
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Then it follows from (3.1) that x ¢ 0Q. Thus, (3.4) is true and the proof is

completed.

Corollary 3.1 Let f be a scalar-valued function in (1.2). and assume

there exist constants R > 0, o > 0 such that

M(R) < R, (3.7)

3o(a)
2

and

If(¢, x(Kx)(t))| < 20xf(¢, x, (Kx)(t) + M(R), V(t, x) € [0, a] x Bg, (3.8)

where M(R) is a positive constant depending on R, Bp = {x e R",|x| < R}.

Then anti-periodic boundary value problem

{xA(t) = f(t, x, (Kx) (1)), € [0, o(a)];
x(0) = —x(o(a)),

has at least one solution x e C[0, o(a)] with |x(t)| < R, t € [0, o(a)].

Proof. Since A=B=1 we have (A+B)"'-= % BlA =1,
(1+](A +B)™'B|) = 2. Then the conclusion follows from Lemma 3.1.

Example 3.1. Assume that T = R and a = 1. Let us show that

1 t
x' = x3 +x° + L_[O e Px(s)ds *20 cos(27tt) (3.9)

has at least one solution x(t) with |x(¢)| <1, V¢ € [0, 1].

1 t
Denoting  f(t, x, (Kx)(t)) = x3 + x° + %I e Bx(s)ds + L cos(2nt)
0

we see that, for all (¢, x) € [0, 1] x Bpg,

6, x, (Ko)@)] < Jxfs + | + 2+

On the other hand,
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20, f(t, x, (Kx)(t))

4 t
= 20(x3 +xt + 2x_0 . e x(s)ds + %Ocos(%tt)
4 x [t x
=2x3 +2x* + ﬁjo e Bx(s)ds + %cos@nt), for o =1
4 2
5 R R
> 2x3 +2x% -2 - ==
A T
Since
. 4 4 1 3
min{x? + 2x° —[x[3 —[x|"} > -0.4,
xeR
we choose
M(R):R—2+£+O.425.
10 10
Then

£, x, (Kx)(@)| < 2x, f(¢, s, (Kx)(¢))) + M(R).

It is not difficult to check that gM(R) < Rfor R € [1, 4]. So, the

conclusion follows from Corollary 3.1.
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